
J .  Fluid Mech. (1990), wol. 216, p p .  161-191 

Printed in Great Britain 

161 

Numerical simulation of liquid-metal MHD flows 
in rectangular ducts 

By A. STERLt 
Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, Institut fur 

Reaktorbauelemente, Postfach 3640, D-7500 Karlsruhe 1, FRG 

(Received 23 May 1989 and in revised form 14 December 1989) 

To design self-cooled liquid metal blankets for fusion reactors, one must know about 
the behaviour of MHD flows a t  high Hartmann numbers. In this work, finite 
difference codes are used to investigate the influence of Hartmann number M ,  
interaction parameter N ,  wall conductance ratio c ,  and changing magnetic field, 
respectively, on the flow. 

As liquid-metal MHD flows are characterized by thin boundary layers, resolution 
of these layers is the limiting issue. Hartmann numbers up to lo3 are reached in the 
two-dimensional case of fully developed flow, while in three-dimensional flows the 
limit is lo2. However, the calculations reveal the main features of MHD flows a t  large 
M .  They are governed by electric currents induced in the fluid. Knowing the paths 
of these currents makes i t  possible to predict the flow structure. 

Results are shown for two-dimensional flows in a square duct a t  different 
Hartmann numbers and wall conductivities. While the Hartmann number governs 
the thickness of the boundary layers, the wall conductivities are responsible for the 
pressure losses and the structure of the flows. The most distinct feature is the side 
layers where the velocities can exceed those a t  the centre by orders of magnitude. 

The three-dimensional results are also for a square duct. The main interest here is 
to investigate the redistribution of the fluid in a region where the magnetic field 
changes. Large axial currents are induced leading to the ' M-shaped ' velocity profiles 
characteristic of MHD flow. So-called Flow Channel Inserts (FCI), of great interest 
in blanket design, are investigated. They serve to decouple the load carrying wall 
from the currents in the fluid. The calculations show that the FCI is indeed a suitable 
measure to reduce the pressure losses in the blanket. 

1. Introduction 
The flow of liquid metals in strong magnetic fields has been a topic of great interest 

in the past (e.g. Hunt 1965; Walker & Ludford 1974a, b,  1975; Hunt & Holroyd 
1977 ; Holroyd & Walker 1978). Recently it came into consideration again in the 
framework of the development of a fusion reactor blanket (Car& et al. 1984; Smith 
et al. 1984). The so-called self-cooled liquid-metal blanket (Malang et al. 1988) uses 
liquid lithium or the eutectic alloy Pb-17Li as the coolant as well as the breeding 
material, thereby simplifying the mechanical design of the blanket. 

However, the interaction between the moving conductor and the strong magnetic 
field confining the plasma induces electric currents, which in turn produce the 

t Present address : Max-Planck-Institut fur Meterologie, Bundesstrasse 55, D-2000 Hamburg 
13, FRG. 
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Lorentz force j x B opposing the flow and creating large pressure losses. The Lorentz 
force is much larger than the frictional and inertial forces, which are confined to thin 
layers with rapid changes of velocity. Therefore, the velocity profiles of mag- 
netohydrodynamic (MHD) flows in strong fields are quite different from those of 
ordinary hydrodynamic flows. This affects the heat and mass transfer. So to design 
self-cooled liquid-metal blankets, knowledge about MHD flows is needed. 

The dimensionless parameter characterizing MHD flows is the Hartmann number 
M .  It gives the ratio of Lorentz force t o  frictional force. The exact definition will be 
given in $2. I n  fusion blankets, M is in the order of lo4 (Holroyd & Mitchell 1984). 

MHD flows a t  large Hartmann numbers have been studied extensively by the 
method of asymptotic expansions. A review of the results of these studies is given by 
Walker ( 1 9 8 6 ~ ) .  Asymptotic analysis is based on assumptions on the order of 
magnitude of different terms in the governing equations, Generally, inertia and 
friction are neglected. These kinds of assumptions can lead to results which are not 
valid for the parameters which are characteristic of the fusion blanket (cf. Talmage 
& Walker 1987). Therefore, semi-analytical or semi-numerical methods have been 
developed (Talmage & Walker 1987; Hua et al. 1988; Madarame & Hagiwara 1988; 
Tillack 1988) which overcome some of the restrictions of the asymptotic approach, 
but still are not able to describe the velocity profile near the walls of the duct 
correctly. They only give the volumetric flow rate in the vicinity of the walls. 
Furthermore, they break down in the outlet region of the magnet, or if the main flow 
direction and the magnetic field are parallel. 

Hua & Picologlou (1989) show that the details of the velocity profile near the walls 
have little effect on the heat transfer, and Reed et al. (1987) found that the theoretical 
predictions are valid well into the regions of low magnetic field. Thus, from an 
engineering point of view, these restrictions seem to be of minor importance. 

Nevertheless, the details of the flow are worth exploring. This can only be done by 
a fully numerical approach. This approach is difficult because of the thin layers in 
which inertia and friction are dominant, and which govern the structure of the flow. 
These layers must be resolved, which quickly leads to problems with storage or 
computing time. Therefore, only a small number of papers present analyses which 
use the fully numerical approach. Most of them consider one- or two-dimensional 
problems (e.g. one-dimensional : Wu 1973 ; two-dimensional : Winowich & Hughes 
1982; Yagawa & Masuda 1982; Morozova, Nagornyi & Elkin 1983; Ramos & 
Winowich 1986). Ramos & Winowich (1986) report that  they had problems with 
convergence a t  Hartmann numbers M > 100. Only a few groups of researchers dealt 
with three-dimensional problems. Khan & Davidson (1979) and Khan (1987) 
consider a parabolized form of the governing equations, whereas Aitov, Kalyntik & 
Tananaev (1983, 1984) and Kalis & Tsinober (1973) use the full set of equations. All 
groups restrict themselves to small Hartmann numbers (M < 20) because spatial 
resolution is limited by the storage available. 

As computers have become more powerful, it is now possible to carry out fully 
numerical calculations a t  higher Hartmann numbers. The present work aims to 
explore the possibilities and limits of the fully numerical approach with present-day 
computers. Using a finite difference code, Hartmann numbers up to lo3 for two- 
dimensional problems and up to lo2 for three-dimensional problems are reached. 
Although these values are far below those occurring in$fusion reactor blankets, the 
results presented reveal the principles of MHD flows a t  high Hartmann numbers. 

The results are mainly consistent with those of earlier research, but provide more 
quantitative information since no assumptions about the order of magnitude of 
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several terms have to be made. Furthermore, results are obtained for the 
redistribution of flows parallel to a magnetic field, the behaviour of the flow in those 
regions a t  the inlet and outlet of a magnet where the field is weak, and of the 
importance of a streamwise component of the magnetic field. 

2. Equations and boundary conditions 

assumptions are appropriate : 
For liquid-metal MHD flows under fusion blanket conditions, the following 

the fluid is incompressible, and; 
the induced magnetic field Bind is negligible compared to the imposed field B,. 
Additionally we assume the flow to be isothermal, thus decoupling the energy 

equation from the momentum equations. Under these assumptions the governing 
equations, in dimensionless form, are (e.g. Walker 1981) as follows. 

(2.1) divu = 0, Conservation of mass 

conservation of momentum (Navier-Stokes equation) 

1 1 
- [ a , u + ( u . V ) u ]  = -Vp+jxB+-Vu,  
N M2 

Ohm’s law 
j = E+ u x B = - V@+ u x B, 

and Poisson’s equation for the electric potential 

A@ = div ( u  x B) = Be curl u. (2.4) 

Here t ,  u, j ,  p and @ are the dimensionless time, velocity, electric current density, 
pressure, and electric potential, respectively. They are made dimensionless by a/v,, 
v,, uvoBo, poviN, and awOBo, respectively, where a is a characteristic length (radius 
of a circular pipe or half the height of a rectangular duct), vo the average velocity, 
u the fluid’s conductivity and po its density. 

The Hartmann number M and the interaction parameter N are two important 
dimensionless parameters characterizing MHD flows. With ,u being the viscosity of 
the fluid, they are given by the ratio of Lorentz force to frictional force, 

M = UB,(C+)t 

and the ratio of Lorentz force to inertial force 

N = aaBi/p,/w,. 

Typical values for fusion blankets are M x lo4 and N x lo5 (Holroyd & Mitchell 
1984). From these large numbers it can easily be seen that friction and inertia play 
no role in most parts of the flow (‘ core ’) and are dominant only in thin layers with 
rapid changes of velocity. But since these layers separate the core regions from one 
another and from the walls, they determine the structure of the flow. Thus in general, 
the terms with M and N in (2.2) may not be discarded. 

In  addition to the governing equations, boundary conditions have to be specified. 
The walls of the ducts under consideration are impermeable and friction is present. 
So the condition on velocity u is 

Ulwall  = 0. (2.5) 

As the induced electric potential @ extends into the walls, in general Maxwell’s 
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equations have to be solved in the walls, too. However, for the case of thin walls, 
defined by t ,  4 a ,  t, being the thickness of the wall, Walker (1981) derives an 
approximation permitting one to  consider the fluid only. In  that case the boundary 
condition on @ a t  the fluid/wall interface reads 

Here V2,, = aF+ai is the tangential part of the Laplacian, where n, r and s are 
forming an orthogonal coordinate system with n pointing into the wall. c = uw tw f ua  
is the wall conductance ratio, u, being the conductivity of the wall’s material. c is 
a measure of the conductance of the wall compared to that of the fluid. Equation 
(2.6) is valid for constant c .  If c varies, e.g. because of varying wall thickness, this 
equation has to be generalized. The derivation proceeds in the same way as that of 
Walker (1981), starting from the observation that in the thin wall the potential does 
not depend on n, but is a function of the tangential coordinates r and s only. The 
generalized boundary condition then reads (Sterl 1989) 

Here Vli is the tangential part of the gradient operator. 
Equation (2.7) can be interpreted as follows (L. Buhler, private communication). 

As the potential of the wall does not depend on n, it is given by @ I w a l l .  The current 
density, integrated over the thickness of the wall, then is -cV,,JWall. Its  divergence, 
-Vll(cVII @) j w a l l ,  must equal the amount of current which enters or leaves the wall. 
It is given by -a, @ I w a l l .  Together, these expressions give (2.7) which therefore 
states nothing but the conservation of current a t  the fluid/wall interface. 

3. Two-dimensional flow in a rectangular duct 
3.1. Formulation of the problem 

We first consider the problem of an infinitely long duct of rectangular cross-section 
(figure 1 )  which is placed in a homogeneous magnetic field 

Bo = Bo(O, sin a, cosa) (dimensionless :Bo = 1 ) .  (3.1) 

As half the height of the duct is used as the lengthscale, the cross-section of the duct 
is - 1 _I y zo. The magnetic field, the wall conductance ratio, and the 
cross-section are independent of x. Hunt (1969) shows that under these circumstances 
only one time-independent flow exists, 

l ,-zo 5 z 

In addition to the influence of the magnetic field (strength and direction), we study 
the effect of the wall conductance ratio on the flow. To this end, the wall conductance 
ratios of the four walls (c, (top), cb (bottom), c1 (left), c,  (right)) can be chosen 
independently of one another. 

Using the above-mentioned assumptions, the governing equations (2.1)-(2.4) 
reduce to a Poisson-type equation for the electric potential 

(3 .3a)  
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FIQURE 1. Rectangular duct in a homogeneous B-field. 

and a Helmholtz-type equation for the velocity, 

v; u(y,  4 -M2u(y, 4 = - w p ;  + D, %I, 2 ) ) .  (3.3b) 

Here V; is the two-dimensional Laplacian, 

v; = a;+a,z, (3.3c) 

and D, = - cos a 8, + sin aa, (3 .3d)  

is a first-order differential operator depending on the direction a of the magnetic 
field. Via the right-hand sides of (3.3~2, b ) ,  D, is responsible for the coupling between 
the two unknowns @ and u. 

The boundary conditions (2 .6)  and (2.7) become 

u( f 1,z) = u(y ,  +zo)  = 0, (3.4) 

(3 .5a)  

+-a,@fv,+zo) = a y [ C r , l a y @ ( Y , * Z o ) l .  (3.5b) 

Hunt (1965) gives an analytical solution of the problem in the form of an infinite 
series for two special cases 

+ a, w f 1,z )  = az[Ct,,, a, @( ~41, 

(i) 

(ii) 

ct = cb = co, 

ct = cb = arbitrary, 

c1 = c,  = arbitrary, 

c1 = c, = 0. 

The series for case (ii) is computed to validate the program which numerically solves 
(3.3)-(3.5). 

3.2. Introduction of a wall-function cDW 
Solving of the Poisson- and Helmholtz-type equations (3 .3)  is done by the fast 
Poisson solver PWSCRT of Swarztrauber & Sweet (1975). It is capable of handling 
Dirichlet- and Neumann-type boundary conditions, but not a combination of first 
and second derivatives as in (2.7) or (3 .5) .  

To handle this type of boundary condition, a wall function Ow is introduced 
(Walker, private communication) by a slight modification of (2.7) 

v,I(cvII ~ ~ ~ ( k + l ) )  = a, @(ywall. (3.6) 
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Here k is an iteration count. The right-hand side of (3.6) is calculated from the 
solution Q j ( k )  of the kth iteration step. Then (3.6) is solved for Qjw(k+l), which in turn 
is used as a Dirichlet-type boundary condition on Q, in the (k+ 1)th iteration step. 
Clearly, (3.6) reduces to  (2.7) when convergence is achieved. 

Unfortunately, this algorithm proves to be unstable. This is due to the fact that 
c is a small parameter. Considering the special case of c = constant, we see that the 
right-hand side of (3.6) is multiplied by the large factor l /c .  This factor amplifies the 
errors which are present in anQ,(k)lwall because it is only an approximation to the 
correct boundary value. 

To overcome this problem an underrelaxation has to be performed. Let ~ D z ( ~ + l )  be 
the wall potential calculated from (3.6). Then instead of this, the following quantity 
is used as the boundary condition in the ( k +  1)th iteration step 

(3.7) 

(3.8) 

Q,y = (1 - + wQ,z(k+’) .  

Empirically, the following value has been found appropriate for w 

w = gmin (ct, c,,, c,, cr). 

In  general (3.6) has to  be solved numerically. However, in the two-dimensional case 
of (3.5), it can be solved analytically. Consider the top wall of the duct. The 
corresponding equation for the top-wall potential Qj, then reads 

(3.9) az[ct(z) a, ~ , y + 1 ) ( Z ) l =  av wyz, 2). 

Dropping Ic for convenience this can be integrated to give 

dz’ 
Qjt(z) = -+r Kr  dz’a,Qj(Z,z‘), (3.10) 

-z0Ct(Z’) -z,Ct(Z ) -zo 

which can easily be calculated by the trapezoidal rule. Similar expressions hold for 
the other three walls. The eight integration constants Q,,,, @i0, etc. are determined by 
additional constraints in the four corners of the cross-section which state that the 
potential is continuous and current is conserved. For the upper left corner ( -  z,, 1) 
they read 

( 3 . 1 1 ~ )  

ct a, @tlz--zo = c1 a?) Q,,Iv-1. (3. I 1  b) 

To keep the resulting system determining the integration constants non-singular, the 
potential has to be fixed a t  some point, e.g. 

Qjt( - z o )  = Qj,. (3.12) 

Physically this corresponds to a gauge of the potential. 

3.3. Performance of the code 

The two equations ( 3 . 3 ~ )  and (3.3b) are solved alternatively, thus forming an 
iteration process. This iteration can be combined with that for determining the 
correct boundary on Q,, as described in the previous section. 

As PWSCRT is used, spatial discretization has to be done on a regularly spaced 
grid. This leads to some problems with storage capacity when going to high 
Hartmann numbers. 

The higher the Hartmann number M ,  the thinner the boundary layers. The 
Hartmann layers a t  walls perpendicular to B scale with M-’, and the side layers a t  
walls parallel to B with M-i (e.g. Walker 1981). So to resolve these layers properly, 
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the grid spacing has to be reduced with growing M .  Experience shows that a t  least 
2-3 points within M-l are necessary to obtain reasonable results, i.e. results lying 
within a few per cent of the correct values defined by Hunt's solution (cf. 53.1). This 
leads to at least 2400 x 2400 points fur M = lo3 which is beyond the capacity of the 
SIEMENS 7890 machine used in this research. 

Fortunately, it is not necessary to use the same number of points in both 
coordinate directions. Consider the case a = go", where D, reduces to the z -  
derivative. It is then observed that the number of points in the z-direction is much 
more important than that in the y-direction. So calculations at M = 100 with 
240 x 240 and 120 x 240 points yield the same results, whereas one with 240 x 120 
differs significantly. The explanation is that the coupling between the u- and the @- 
equations is now dependent only on the z-direction, which therefore must be better 
resolved than the y-direction, even though the Hartmann layers, the thinnest layers 
occurring, form themselves at the y-boundaries ! Therefore calculations for M = lo3 
are performed with only 120 x 1000 points. 

The fact that the proper representation of the coupling between the two equations 
( 3 . 3 ~ )  and (3.3b) is very important is stressed by another observation. Ap- 
proximating the first derivatives in the operator D, in fourth order instead of second 
order increases accuracy significantly. For example, for M = lo2 and 240 x 240 
points, the deviation from the exact (Hunt) result is about 10% for a second-order 
approximation, but only about 2 %O for fourth-order. 

The number of iteration steps needed for convergence increases with rising 
Hartmann number and decreasing wall conductance ratio. The first dependence 
reflects the fact that gradients become steeper when M grows, while the second 
is a direct consequence of the underrelaxation needed, cf. (3.8). For example, with 
M = lo2, cb = ct = c1 = c, = 5 x and 240 x 240 points, more than 1200 iterations 
are needed, leading to a computing time of about two hours on KfK's (Kern- 
forschungszentrum Karlsruhe) SIEMENS 7890-machine. 

3.4. Results 

The results of the calculations are presented graphically by depicting current density 
and velocity. These results are confined to the special case of a square duct, i.e. z,, = 1. 

The current density is calculated from u(y, z )  and @(y, z )  using Ohm's law (2.3). It 
is represented by arrows lying in the (y, z)-plane. Velocity is represented by a three- 
dimensional surface above the duct's cross-section. The distance between the surface 
and the (y,z)-plane corresponds to u(y,z). Additionally, the values for urnax, the 
maximum velocity, dpldx, the dimensionless pressure gradient, and a, the angle 
between the z-axis and B are given. Also the direction of B is represented by an arrow 
in every picture. 

Pressure is made dimensionless with the interaction parameter N (cf. 92). As N is 
proportional to W ,  the dimensional pressure gradient (dp/dx)* is proportional to 
W(dp/dx). This is important to remember when comparing values of dpldx a t  
different Hartmann numbers. 

The basic phenomena of two-dimensional MHD flows will now be explained for the 
case a = 90" (figures 2 and 3). From the current density plots it can be seen that the 
current flows to the right-hand side in most of the duct's cross-section. This domain 
is known as the 'core' of the flow. Flow back to the left-hand side to close the 
circuit takes place only in narrow layers a t  the top and bottom walls. These are the 
Hartmann layers. Comparison of figures 2(a)  and 2jb)  shows that these layers 
become thinner as M increases. Finally, a t  the sidewalls, current flows mainly in the 
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B t 

FIQURE 2(a ) .  For caption see facing page. 

y-direction. This is the region of the side layers. Comparing pictures for different wall 
conductance ratios (figures 2a, 3a, b )  we see that the current density rises when the 
conductance ratio of the top and bottom walls (ct, cb) is increased, while the influence 
of the sidewalls’ conductivity is much less. Obviously, the resistance of the 
Hartmann layers is the limiting value for the current flow. If another resistance, 
namely that of the top wall, is in parallel to that of the Hartmann layer, the total 
resistance is reduced and the current density is rising (cf. Picologlou 1985), thereby 
increasing the pressure gradient. 

Looking at  the velocities we easily find the three regions: core, Hartmann layer 
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FIGURE 2. Current density (top) and velocity (bottom) in a duct with well-conducting top 
and bottom walls (c, = c, = 0.1) and non-conducting sidewalls at different Hartmann numbers 
( a )  M = loe, (b )  M = lo3. The Hartmann and side layers can be distinguished clearly, becoming 
thinner as M grows. 

and side layer again. In the core, the velocity is nearly constant, abruptly falling to 
zero in the thin Hartmann layers. The most interesting region, however, is the side 
layers. Their structure is strongly dependent on the wall conductance ratios and 
therefore on the current densities. The larger the current densities, the higher the 
velocities are in the side layers, forming the so-called M-shaped profiles. 

The explanation of this striking phenomenon is straightforward (Hunt 1965). In 
the side layers the current density always has a component j ,  parallel to B,,. It does 
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B f 

FIQURE 3(a) .  For caption see facing page. 

not contribute to the Lorentz force j x B, acting against the flow. On the other hand, 
in the corej, vanishes, and the whole current contributes to j x B, leading to a higher 
force. This can be seen clearly by comparing sidewalls with different conductivities. 
In figure 3 ( b )  the right-hand sidewall is poorly conducting leading to a small z- 
component of j .  Therefore j x B, is small, too, and the velocity is high. At the left, 
highly conducting side, the current has a comparatively large z-component, 
producing a large Lorentz force. Thus the velocity is reduced. This effect is more 
pronounced when the total current density is higher. 

Figures 2 and 3 ( b )  show a minimum of the velocity a t  the boundary between core 
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B t 

FIGURE 3. Current density (top) and velocity (bottom) at M = loa for different wall conductance 
ratios. a = 90'. (a) all walls non-conducting, (b )  ct = c,, = c, = 0.1, c, = 5 x lo-*. The arrow points a t  
the minimum between core and side layer. Comparing figures 2(a) and 3(a, b)  we see that the 
conductivities of the top and bottom walls govern the pressure loss while those of the sidewalls 
determine the structure of the side layers. 

and side layer (see arrow in figure 3 b ) .  Hunt (1965) shows that this minimum 
can even assume negative values. He gives a critical Hartmann number of M ,  = 89 
at cb = ct = 00 (but cf. Temperly 1984, whereM, = 96.3). As only finite values for c ~ , ~  
can be used in the code used here, this limit is not found. All flows considered with 
M = lo2 exhibit no counter flow. At M = lo3 and ct = cb = 1,  however, negative 
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FIGURE 4. Pressure losses as a function of Hertmann number at different combinations of wall 
conductance ratios. The factor LW serves to  make values for different M comparable as explained 
in the text. For comparison the curves resulting from the formula of Chang & Lundgren (1961) are 
also given. 

values of velocity are found. It is possible, that the occurrence of negative velocities 
is only artificial. First, the assumption of a two-dimensional flow may not be valid 
a t  such high Hartmann numbers. Secondly, the resolution used (120 x 1000 points) 
may still be too coarse. Unfortunately, it is neither possible to carry out a three- 
dimensional calculation of the flow a t  M = lo3 (cf. $4) nor to increase the resolution, 
so that the question remains open. 

Figure 4 shows the dependence of W(dp/dx) (which is proportional to the 
dimensional pressure gradient as explained above) on Hartmann number. At small 
Hartmann numbers, the influence of the wall conductance ratios is small, indicating 
that the electromagnetic influence on the flow is small. With M growing, MHD effects 
gain influence and the wall conductance ratios become important, the top and 
bottom walls playing the main role (see above). That is the reason why the formula 
for pressure losses derived by Chang & Lundgren (1961) for a channel with no 
sidewalls, is suitable for predicting the pressure loss in a duct. The Chang & Lundgren 
values are also plotted in figure 4 for comparison. 

Investigating the influence of the direction of B,, it is seen that rotation of B, 
causes a corresponding rotation of the velocity profile (figure 5 ) .  I n  addition, the wall 
conductance ratios of the top and bottom walls (ct = cb = 0.1) and those of the 
sidewalls (cl = c, = 5 x are different. Thus they change roles during rotation, 
again showing the different influences of walls parallel and perpendicular to the 
magnetic field. 

As can be seen from figure 4, the pressure loss rises if the wall conductance ratio 
rises. For technical applications in a blanket, i t  is therefore desirable to have c as low 
as possible, c = 0 being the optimum. Unfortunately, no known insulating material 
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FIGURE 5. Velocity profiles for different directions of the magnetic field Bo at M = loe. As the 
conductances of the two pairs of walls are different (c, = c,, = 0.1, c, = c, = they interchange 
their role during rotation. The different influence of walls perpendicular and parallel to Bo on the 
flow is thus revealed. 
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FIGURE 6. Current density (top) and velocity (bottom) a t  M = 10’ in a duct whose wall 
conductivities simulate an FCI. The part of high conductance (c  = 0.1) is situat,ed a t  the middle of 
the top wall at  IzI 5 0.02. There, a current vortex is formed leading to a notch in the velocity profile. 

is compatible with liquid lithium at some hundred degrees. Thus one has to use 
conducting material for the wall, which may lead to unpermissibly high pressure 
losses (Malang et al. 1988). 

To decouple the load carrying wall from the electric circuit induced in the fluid, the 
use of novel ‘Flow Channel Inserts’ (FCI) has been proposed (Malang et aE. 1988). 
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FCIs are prefabricated units fitted loosely into the flow channels. They consist of a 
composite sheet with a ceramic layer sandwiched between two steel sheets. 
Mechanical stresses in the FCI become insignificant by providing a longitudinal slot 
for pressure equalization between the inner flow region and the outer gap. 

The slot is filled with liquid metal. From the electrical point of view it forms a strip 
of good conductance in an otherwise poorly conducting wall. To investigate its 
influence we consider a duct of low wall conductance ratio ( c  = with a strip of 
good conductance (c = 0.1 for IzI S 0.02) a t  the top wall. For the case of the slot 
being a t  a wall perpendicular to B,, the result is shown in figure 6. A current vortex 
forms in the close neighbourhood of the well conducting strip, leading to a small 
notch in the velocity profile. The reason for this is clear. The potential difference 
between z = +0.02 and z = -0.02 can drive a large current through the well 
conducting part of the top wall. This current cannot continue through the 
neighbouring poorly conducting parts of the wall, and therefore must close through 
the liquid, thereby forming the vortex. The Lorentz force produced by this current 
vortex causes the notch in the velocity profile. 

If the slot is a t  a wall parallel to the magnetic field (not shown), it has no influence 
on the flow. This is due to the fact that no potential difference is induced on walls 
parallel to the magnetic field across the plane of symmetry, where the slot is placed. 
So there is no reason for additional currents to flow. Thus positioning the FCI with 
the slot across the plane of symmetry at a wall parallel to B,, the flow behaves as if 
all the walls were poorly conducting. 

However, even in the case of having the FCI wrongly adjusted the influence of the 
slot is only small: the dimensionless pressure gradient rises only from 1.51 x to 
1.52 x lop2. 

The results of the calculations compare well with those of Sezgin (1987), who 
considers insulated ducts with a strip of good conductance using a semi-analytical 
approach. A quantitative comparison between his results and those presented here 
is not possible, however, because the Poisson solver PWSCRT does not permit 
Neumann and Dirichlet boundary conditions arising from the isolated wall and the 
conducting strip, respectively, a t  the same wall. 

Alty (1971) studies MHD flows in ducts in which one pair of opposite walls is 
designed as electrodes. Electrodes are characterized by a constant potential, a 
condition that is easily implemented into the code. The results of the numerical 
calculations mainly agree well with those of Alty. Only in one case is there a 
discrepancy. If the sidewalls are two short-circuited electrodes and the angle between 
the z-axis and the magnetic field is less than 45O, Alty finds two thin velocity jets 
situated parallel to the field. They extend over the whole duct from one corner to the 
opposite wall. The numerical simulation also shows these jets emanating from the 
corners (figure 7) ,  but they do not reach the opposite walls. The reason for this is that 
Alty a priori considered the variables to be constant along the field lines. This 
assumption is obviously not correct. 

4. Three-dimensional flows in a rectangular duct 
4.1. Description of the problem 

Up to now, the flows considered involve parameters (such as c ,  M ,  or the duct’s cross- 
section) which are constant in the x-direction. In  real applications, however, there 
will be gradients of B, ducts of different wall conductance ratios welded together, 
changes in cross-section, or bends in the duct. All these items will produce deviations 
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FIGURE 7. Isotachs in a duct with short-circuited sidewalls, M = 200 and a = 30'. In contrast to 
the results of Alty (1971), the regions of high velocity do not reach the opposite wall. 

L x = XI 

FIGURE 8. Geometry considered for three-dimensional calculations. 

from fully developed two-dimensional flow, leading to interesting three-dimensional 
effects, some of which have been studied analytically (e.g. Walker & Ludford 1974a, b,  
1975; Walker 1986~-e). 

This research is confined to three-dimensional effects caused by variations of the 
magnetic field or the wall conductance ratio along x. Changes in the geometry of 
the duct will not be considered, thus avoiding numerical problems arising from 
computational domains whose boundaries are not parallel to the coordinate 
directions. For such domains efficient Poisson solvers are not known. In the case 
considered here, the computational domain is rectangular (figure 8), a case for which 
efficient solvers are available. Here, a program is used that was kindly provided by 
Dr Schumann (DLR, Oberpfaffenhofen). It uses FFT methods described in 
Schumann & Sweet (1988) and incorporates staggered boundary conditions. 

Three-dimensional effects are introduced by changes in the magnetic field B, or 
the conductance ratios of the walls, which may be any desired function of the 
coordinates. 

= (B,(z, Y> Z ) , B y ( X ,  y, Z ) , B Z ( X ,  y, 211, 

I 2 = - z o :  c, = c , ( x ,  y), z = zo :  c, = c , ( z ,  y), 

y = - 1 : Cb = c&, z ) ,  y = 1 : Ct = Ct(X, y). 
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The entrance and exit are a t  x1 and x2, respectively. Boundary conditions a t  these 
cross-sections are not known exactly unless they are so far away from the three- 
dimensional region that the flow is fully developed. Therefore x1 and x2 have to be 
chosen such that they are not too close to  the three-dimensional region, but as close 
to it as possible to prevent the computational domain from becoming too large. 

To solve the problem, the full set of MHD equations (2.1)-(2.4) has to be used, 
along with boundary conditions (2.5) and (2.7) a t  the walls. They have to be 
supplemented by boundary conditions at the entrance and exit. As already 
mentioned, the entrance and exit are in regions of fully developed flow. These are 
characterized by 

which is used as the boundary condition. If the entrance or exit is outside the 
magnetic field, @ = 0 may be specified there. It is also possible to specify u a t  the 
entrance instead of putting a,u = 0 there. 

Pressure is fixed a t  inlet and outlet. Care has to be taken to ensure that the average 
dimensionless velocity assumes a value of one. This is necessary because the average 
velocity q, has been used to non-dimensionalize all quantities (cf. $2). The boundary 
conditions for pressure at the walls will be explained in the next section. 

a X u  = a,@ = = = 0, (4.3) 

4.2. Description of the algorithm 
The system of equations (2.1)-(2.4) is solved for steady state. To arrive there, the 
Navier-Stokes equation (2.2) is advanced forward in time by an AD1 method 
described below. At each timestep, two Poisson-type equations for pressure and 
electric potential are solved. The equation for potential is given by (2.4), whereas 
that for pressure is derived from a time-splitting method due to Kim & Moin (1985). 
In  this method, (2.2) is integrated without the pressure term, resulting in an 
intermediate velocity u’. Then p@+l), the superscript denoting the timestep, is 
calculated so as to fulfil (2.1), leading to 

where At is the time increment. P(~+’ )  is then used to update u‘ to get the final dn+l) 

(4.5) = v ~ - & . v p ( n + l ) ,  

which by construction is divergence-free. 
To be compatible with (2.5), the boundary condition on p a t  the walls must be 

an P l w a ~  = 0, (4.6) 

where the subscript n denotes the normal derivative. 

is written in the following form 
The AD1 method is used in the following way. The Navier-Stokes equation (2.2) 

Here D, u stands for the elliptic terms, namely 
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D, and D, are defined analogously, while R contains the remaining terms. The AD1 
algorithm used then reads (Douglas & Gunn 1964; Briley & McDonald 1980) 

(1 - At D,) trl =z At[(D, + D, + D,) dn) + R(n)] ,  (4.9a) 

(l-AtD,)v, = o,, (4.9c) 

V ( % + l )  = V(n) + V 3 .  (4.94 

The AD1 method described is stable as long as only the diffusive terms are 
considered. However, the convective stability limit given by the well-known CFL- 
condition has to be obeyed. 

Spatial discretization is done on a staggered grid with p and Qi being defined at the 
centre of a cell, while the vector components are defined on the corresponding faces 
of the cell (e.g. Anderson, Tannehill & Pletcher 1984, p. 459). The derivatives are 
then approximated by the standard second-order central difference formulae. If 
values are needed where they are not defined, e.g. a velocity component a t  the cell’s 
centre, they are linearly interpolated between adjacent points. Thus no upwind or 
donor-cell differentiation to stabilize the calculation is done. It is not necessary since 
due to the large interaction parameter, convection does not play an important role. 

As in the two-dimensional case, a wall function Qi, is introduced to incorporate the 
boundary condition (2.7) on Qi into the calculation (cf. $3.2). The defining equation 
(3.6), however, now has to be solved numerically. It is discretized in the usual way 
on an (5, $)-plane formed by unrolling the walls of the duct, s being the circumferential 
coordinate. Along the edges of the duct, compatibility conditions analogous to (3.11) 
have to be formulated. While (3.11 a )  which states that the potential is continuous 
at  the edges remains unchanged, there is a change in (3.11 b) which gives conservation 
of current. While in the two-dimensional case current can only flow from the left to 
the top wall, say, it is now able to flow in the x-direction, i.e. parallel to the edge, too. 
These currents have to be added to (3.11 bj  to get the correct condition on current 
conservation. The linear system obtained from discretizing (3.6) and the cor- 
responding conditions a t  the edges is solved by the routine MA28AD/CD from the 
HARWELL subroutine library. 

(1 -At  Dy) V ,  = trl, (4.9b) 

More details of the algorithm can be found in Sterl (1989). 

4.3. Performance of the code 
A computer program, MHD3D, incorporating the algorithm described above is 
implemented on KfK’s scalar SIEMENS 7890 machine. Computation starts from an 
initial guess and is finished if the maximum relative changes in the velocities are less 
than The number of timesteps necessary does not depend on the number of grid 
points, but on the parameters M ,  N ,  c ,  and the gradient of B,. The higher M and the 
B-field gradient, the higher the number of timesteps needed, whereas less steps are 
needed if N or c increase. The dependence on M and c is thus the same as in the two- 
dimensional case (cf. $3.3). 

The computation time per timestep is roughly proportional to the number of grid 
points used. For example, for 32, points, the usual resolution, it is 4.56 seconds, 
leading to large CPU-times. So for M = 50, N = lo3, ct = cb = 0.1, c1 = c, = lop3 and 
xo = 0.15 (definition of xo see below, (4.11)), 3020 timesteps are needed, leading to 
approximately 4 hours of CPU-time. 

A maximum of 40 x 40 points is used in the cross-sectional plane. Based on the 
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discussion on the resolution needed in the two-dimensional case (cf. $3.3), it  seems 
impossible to handle Hartmann numbers greater than about 30. However, the 
following observations are made. 

(i) Calculations done with 323 points and 2 4 x 4 0 ~ 4 0  points a t  M = lo2 show 
differences of less than 5 %. 

(ii) In  regions of fully developed MHD flow, the deviations from the corresponding 
two-dimensional calculations are at most 10 % for the cases presented here. 

(iii) The strength of the three-dimensional effects increases monotonically with 
increasing M .  

(iv) Thus results obtained a t  high Hartmann numbers are a t  least qualitatively 
correct with respect to flows a t  higher M .  

Therefore it is valid to conclude that the results presented for M up to lo2 show the 
correct behaviour and are suited to gain insight into the physics and the phenomena 
of high Hartmann number MHD flows. 

4.4. Results 
4.4.1. Preliminary remarks 
As mentioned earlier, two sources for three-dimensional effects are considered, 
namely changes in Bo or c along the flow direction. It is found that changes in B, 
produce the most severe and spectacular effects, whereas changes in the wall 
conductance ratio have only minor implications. Therefore an extensive discussion 
of the influence of B, changing in the streamwise direction is presented first. As in the 
two-dimensional case, the analysis is confined to a square duct. 

The applied magnetic field is chosen to be 

(4.10) 

the other two components being set to zero to save computing time. If xo is positive, 
B, rises from zero to one, while negative xo causes a corresponding decrease. The 
magnitude of xo governs the gradient of the field. Calculations are usually done with 
xo = f0.15, giving rise to a rather steep gradient. The reason for choosing this value 
is to keep the streamwise extension of the computational domain as small as possible 
in order to obtain good resolution. 

Unfortunately, the form (4.10) for the magnetic field is unphysical because it is not 
curl-free. As we want to avoid the complications of calculating a real, divergence- 
and curl-free field which necessitates solving an additional Poisson- type equation, we 
make additional calculations with the field 

B, = (Y%B,(X),B,(+O),  (4.1 1)  

(By from (4.10)), which is curl-free but not divergence-free. Therefore (4.11) only 
yields an estimate of the influence of neglecting B,. 

Comparison between results from calculations with and without a x-component of 
B, shows that 1 

(i) the pressure drop is reduced using (4.11); 
(ii) with (4.11), less fluid is driven into the side layers in the region where B, 

changes. 
These observations can easily be explained. As B, opposes motion in z-direction, 

less fluid can flow to the sides. As a result, the redistribution of the velocity is 
reduced, which in turn reduces the pressure drop. 
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However, the differences between calculations with (4.10) and (4.1 l),  respectively, 
are reasonably small so as to justify the use of the simple field (4.10). This is in 
accordance with arguments given by Talmage & Walker (1987). 

4.4.2. Flow entering B-field region - qualitatively 

The case with M = 60, N = lo3, c = 0.1, and xo = 0.15 is chosen to be the reference 
case. The influence of the parameters will then be investigated by changing one of 
them while fixing the others. 

Figure 9 shows the redistribution of the velocity profile. At different positions x 
along the duct, the u-velocity is plotted as a three-dimensional surface above the 
cross-section of the duct. For convenience, the field strength B, is displayed, too. The 
first picture (x = -2.13) is far away from the magnetic field region (B, = 0). This can 
easily be seen from the purely hydrodynamic profile. The second picture (x = - 1.13) 
is situated right at the beginning of the field (I?, = 5 x As a first consequence 
the Hartmann layers begin to evolve, resulting in a flattening of the profile parallel 
to the top and bottom walls. The next picture (x = -0.63, B, = 1.5 x shows the 
beginning of the M-shaped profile. The fluid is driven towards the side walls parallel 
to B,. In the following pictures the M-shape grows, reaching its maximum at x = 0. 
Here the B-field gradient has its maximum, also. Having passed the maximum, the 
M-shape decays into the fully developed MHD profile already known from $3.  This 
final stage is shown in the last picture (x = 2.13, B, = 1) .  While the profile in the 
z-direction passes through several intermediate states until the fully developed MHD 
profile is reached, the Hartmann layers, once formed, show no significant changes, 
their steep gradients remaining right next to the walls. 
' The transition from the fully developed hydrodynamic to the fully developed 
magnetohydrodynamic state thus is not monotonic, but passes through several 
intermediate states. They are highly M-shaped with nearly the whole mass flux 
carried by the side layers. What causes these intermediate states? To answer this 
question figure 10 is examined. Here the current density in the midplane 
perpendicular to B, is shown. As the induced voltage across the duct parallel to z is 
proportional to B,, a streamwise potential gradient occurs leading to streamwise 
currents. As can be seen from figure 10, these currents close upstream and 
downstream of the variable field region. The Lorentz force associated with them 
accelerates the flow in the upstream region and decelerates it downstream. However, 
Bo and thus j x B,, are greater behind than before the transition region, thus leading 
to a net force opposing the fluid (cf. also Hunt & Holroyd 1977 ; Holroyd & Walker 
1978). 

Near the wall the currents are flowing in the x-direction producing no streamwise 
forces. Thus the Lorentz forces associated with the streamwise currents act as a kind 
of blockage of the central part of the duct. The fluid bypasses this blockage by 
flowing in the regions near the wall where the anti-streamwise force is low. However, 
the Lorentz forces in this region are directed towards the centre of the duct opposing 
the motion into the side-layers. The forces are balanced by a corresponding 
transverse pressure gradient, as can be seen from figure 11 in the next section. 

4.4.3. Flow entering B-field region - quantitatively 
Having discussed the phenomena occurring in the region of varying magnetic field, 

characteristic quantities are now defined which will be used to compare flows with 
different values of the parameters M ,  N ,  c ,  and xo. For the standard case they are 
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FIGURE 9. Profiles of u-velocity in the entrance region of a magnet at different cross-sections for 
the standard case. Starting from fully developed hydrodynamic flow the velocity is redistributed 
in the transition region, the fluid being driven towards the sidewalls. The evolving M-shaped profile 
then decays into the fully developed MHD profile. 
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FIGURE 10. Axial currents induced in the region of varying magnetic field in the plane y = 0. The 
strength of the field is indicated by the upper curve. 

shown in figure 11. They consist of: 
the magnetic field B,(x) for the sake of orientation, 
the pressure on the centreline, p(x, 0, 0), 
the pressure at  the sidewall, p(x, 0, l ) ,  
the streamwise pressure gradient on the centreline, -azp(x, 0, 0) ,  
the centre of u-distribution a t  y = 0, 

rzu(x ,  0, z )  dz 

the transverse potential difference, 

(4.12) 

A@~(x)  = I @ ( x ,  1 , O )  -@(x, 0,l)I. (4.13) 

The centre of u-distribution is a measure of the 'M-shapedness'. The greater z,, the 
greater the velocity in the side layers. For a purely hydrodynamic flow in a square 
duct, z, = 0.383. A plug-type profile (u = constant) would yield z, = 0.5. Thus if 
zs > 0.5, the velocity is higher near the sidewalls than at the centre. 

The corresponding curve of figure 11 clearly shows how the fluid is first driven 
towards the sides in the transition region, then comes back partly to form the fully 
developed MHD-profile which still has a slight M-form, as indicated by z, = 0.53. 
This compares well with the last picture of figure 9. 

Looking at  the pressures next, it is clear that in the transition region the pressure 
at  the centreline exceeds that a t  the wall. Thus there is a pressure gradient between 
wall and centre balancing the Lorentz force, as mentioned previously. In the regions 
of fully developed flow, this transverse pressure gradient is of course zero. 

At the entrance, in the region of fully developed hydrodynamic flow the pressure 
gradient -a,p(x, 0,O) is constant. At the beginning of the magnetic field it decreases 
a little, due to the Lorentz force accelerating the flow as discussed above. The 
pressure gradient then rises sharply, as now the Lorentz force caused by the closing 
streamwise currents opposes the flow. At the exit the gradient is somewhat lower, 
now being governed only by the currents induced in the cross-sectional plane as 
explained in $3. 

The last curve gives the transverse potential difference AQt which can easily be 
measured. It is monotonically increasing. In fully developed MHD flows, A@t is 
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FIGURE 11. ‘Characteristic quantities’ as a function of streamwise position x for the standard case. 
The three-dimensional effects in the transition region can be seen clearly. 0 ,  magnetic field ; 0 ,  
pressure at centre ; a, pressure at side ; + , pressure gradient ; X , centre of u-distribution ; 0,  
transverse potential difference. 

X 

proportional to B,,. The difference between the slopes of the B,-curve and the AQt- 
curve is caused by the axial currents. They smear the potential distribution over a 
larger region. 

4.4.4. Influence of external parameters 
Figure 12 shows the influence of M on some quantities describing the three- 

dimensional effects. For comparison, the lowest curve shows the centre of u- 
distribution for fully developed hydrodynamic flow, which of course is independent 
of M .  The next curve shows the centre of u-distribution for fully developed MHD 
flow. It increases with M .  This is in qualitative agreement with the results of the 
two-dimensional calculations of $3. Resulting from the worse resolution in the 
three-dimensional calculations, however, quantitatively there are slight differences 
( x 5 %) between the values from two-dimensional and three-dimensional results, 
respectively. The third curve, marked by triangles, shows z,(O), the maximum of the 
centre of u-distribution. As expected, the higher M is, the higher the M-shapedness 
measured by x,(O). It is due to the fact that with larger M ,  the blockage of the duct 
as discussed in the last section is higher, too. 

The dashed curve seems to contradict this view. It shows the maximum of the 
transverse pressure difference Apt* max corresponding to the maximum difference 
between the two curves for pressure in figure 11. For convenience it is multiplied by 
ten. AptSmax decreases with M .  Taking into account that the dimensional pressure 
results from multiplying the dimensionless one by M2 (cf. §3.5), it is seen that the 
contradiction is only artificial. 

The last, dotted curve shows the maximum transverse potential difference 
A@t,max. It is reached in the regions of fully developed MHD flow. The plot shows 
that it is independent ofM. As the dimensional potential results from multiplying the 
dimensionless one by M, this agrees with physical intuition. The values shown for 
AQt, max agree well with those of the two-dimensional calculations. 
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c, = c, c, = c, 2s.  m,x %MHD Apt,,,, A%, max 

0 0 0.7339 0.4327 0.0976 1.0390 
10-3 10-3 0.7325 0.4359 0.0977 1.0381 
0.1 10-3 0.71 18 0.5693 0.0960 1.0043 
0.1 0.1 0.6889 0.5397 0.0923 0.9748 

10-3 1 .o 0.6284 - 0.0732 0.8377 

TABLE 1.  Dependence of quantities characterizing three-dimensional MHD-flows in the region of 
variable magnetic field on wall conductance ratio. 

Not shown is the behaviour of the same quantities as a function of x,, the 
parameter governing the B-field gradient. As expected, the intensity of the three- 
dimensional effects decreases as xo increases thereby flattening the B,-curve. 

The three-dimensional phenomena are caused by electric currents. Because of this, 
the wall conductances are expected to influence them. Table 1 shows this influence 
with the aid of the maximum of the centre of u-distribution, z , , ~ & ~ ,  the centre z , , ~ ~ ~  
in fully developed MHD flow, the maximum transverse pressure difference Apt, max, 

and the maximum transverse potential difference Aat, max. 

As explained above, the three-dimensional effects are caused by currents flowing 
in the (5, 2)-plane. These are influenced mainly by the conductivities c,  and c,  of the 
sidewalls. If the sidewalls are poorly conducting, the axial currents cannot enter 
them, but have to flow in the fluid. The relative difference between the Lorentz forces 
acting against the flow in the duct’s centre and near the walls, is then greater than 
in the case of highly conducting walls. In  that case, the currents can enter the walls, 
producing a large counter force in the side layers, too. If the sidewalls are poorly 
conducting, more current will flow parallel to B, in the side layers, producing a 
smaller counter force, forcing more fluid into the side layers. The values shown for 
z,,,, and AptSmax confirm this view. 
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ro = 0.15 (entrance) xo = -0.15 (exit) 

N 28, msx Apt 2s. max Apt, max 

lo2 0.6835 0.1039 0.6626 0.1061 
103 0.6889 0.0923 0.691 1 0.0935 
104 0.691 1 0.0926 0.6914 0.0927 

TABLE 2. Dependence of z , , ~ ~ ~  and Apt,,,- on interaction parameter N and sign of xo, i.e. begin or 
end of the magnetic field. 

Unlike the three-dimensional effects in the transition region, the behaviour in the 
two-dimensional region is governed by currents in the (y,z) plane. Therefore the 
conductance ratios of all the walls are important, as can be seen from the 
corresponding values of table 1. For a deeper discussion compare $3.5. 

The last parameter to be investigated is the interaction parameter N .  As N 
describes inertia, it is reasonable here to discuss also the difference between flow into 
and out of a magnetic field, respectively. Therefore in table 2, the quantities zs,MHD 
and Apt,,, are displayed for xo = 0.15 as well as for xo = -0.15, for different N. As 
can easily be seen, inertia does not play a role for N > lo3. Flow into and out of the 
field and cases between N = los and IV = lo4 are indistinguishable. The case N = lo2, 
however, is different from those of higher N .  Additionally, at N = lo2 flows into and 
out of the field are different from one another. As inertia opposes the redistribution 
of the fluid, values for zs, are lower a t  N = lo2 than a t  N > lo3, indicating less M- 
shapedness. Since at the outlet from the field the strength of the Lorentz force 
decays, this effect is more pronounced there than at the inlet. 

These observations are illustrated by figure 13 where the characteristic quantities 
known from figure 11 are plotted for two flows through a field ranging from about 
x = -2  to x = +2.  The duct is non-conducting (c  = 0) and the Hartmann number is 
70. While in the upper plot, where N = lo3, the beginning and end of the field region 
cannot be distinguished as they appear to be symmetric, the lower plot (N = lo2) 
reveals non-symmetries between flow into and out of the field. 

4.4.5. Changes of c in streamwise direction, c = C ( X )  

Unlike changes in the field strength, changes in the wall conductance ratio do not 
lead to significant three-dimensional effects. The transition between the two fully 
developed flows takes place monotonically and is confined to a small region. This is 
illustrated in figure 14 by the characteristic quantities for flow in a duct with a jump 
in wall conductivity. At x = 0, c jumps from 0.1 to 0.5. The magnetic field is constant 
everywhere. The reason for the absence of large three-dimensional effects is that only 
small axial currents are induced. As can be seen from the AQt-curve in figure 14, the 
transverse potential differences are only slightly different in the two parts of the 
duct. This is in agreement with the values of A@t,max at different c given in table 1. 
Therefore there is only a small axial potential difference driving only small currents. 
The Lorentz forces associated with them are not big enough to distort the flow. 

4.4.6. Flow channel insert 
In 53.5 it  was shown that the longitudinal slot of an FCI has no influence on the 

flow if it is positioned a t  the sidewall. As the wall conductance ratios have only little 
effect on the three-dimensional phenomena in the region of variable magnetic field 
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FIGURE 13. Characteristic quantities for flows traversing a magnet. M = 70 and c = 0. In the upper 
picture N = lo3, entrance and exit appear symmetrical indicating that inertia does not play a role. 
In contrast to that, at N = 10' (lower picture), inertia influences the flow, as can be seen from the 
lack of symmetry between entrance and exit from the field. See figure 11  for key. 

(cf. $4.4.4), the slot is expected to have only minor impact on the flow here. To 
confirm this expectation two calculations are performed, one with c = lop3 for all 
walls, the other with a small strip (Iyl 5 0.15) of good conductance (c = 0.1) at  the 
sidewall z = 1 .  The remaining parameters are M = 50, N = lo3 and x,, = 0.15. The 
overall pressure drop between x = - 4  and x = + 4  is Ap = 0.2135 in the first and 
Ap = 0.2162 in the second case. This is a very small difference. The slot produces only 
a small distortion in the boundary region of the velocity profile as shown in figure 15. 
It is concluded that the FCI fulfils its task in the variable field region also. 
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FIGURE 14. Characteristic quantities in a duct with a jump in wall conductivity as indicated by the 
solid curve. The magnetic field is homogeneous with M = 50 and N = lo3. The transition takes place 
monotonically without leading to an M-shaped profile. 0,  Wall conductance ratio; other symbols 
as in figure 11. 

FIGURE 15. Influence of an FCI on the velocity profile in the region of increasing magnetic field 
strength. The profile shows a small distortion a t  the right wall where the well-conducting strip is 
situated. x = 0.38. 

4.4.7. Entrance length in an axial magnetic jield 

constant, on the entrance length. At the entrance of the duct, the profile 
Finally, we investigate the influence of an axially directed magnetic field, B, = 

(4.14) 

is arbitrarily assumed, and the distance needed to reach fully developed flow is 
looked for, which in this case is identical to the purely hydrodynamic case. 

The redistribution of the profile (4.14) requires motion perpendicular to the 
applied field B,. As such a motion is suppressed by the field, the entrance length 
increases when M becomes larger, leading to a computational problem. For reasons 

u(x l , y ,  2) = 1 + z ,  21 = w = 0, 

I FLM 216 
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M N R e = W / N  xE 

50 1 0 3  2.5 5.7 
50 lo2 25 6.9 
100 102 100 > 16 

Without Field 100 7.6 
TABLE 3. Entrance lengths xE for different values of M and N at c = 0. 

of capacity, the length of the computational domain cannot be made large enough 
for fully developed conditions to be really reached. The following measure for the 
entrance length is therefore chosen. The given profile a t  the entrance is non- 
symmetric in the z-direction, while the fully developed profile is symmetric. The 
deviation from symmetry can be used to judge the completeness of redistribution. 

Symmetry is measured by the centre of u-distribution z,*, which is defined 
analogously to z, of (4.12), except that the integrations now have to be performed 
over the full width of the duct. The fully developed profile is then characterized by 
z,* = 0. Since this value cannot be reached in the calculations as explained above, z,* 
= 0.05 is arbitrarily taken as the limit, and the entrance length xE is defined to be 
the distance between entrance and the position where z,* reaches the value of 0.05. 

Table 3 shows the entrance lengths xE for different Hartmann numbers and 
interaction parameters in a duct with c = 0. For comparison, the value for a 
calculation without field is also given. It agrees well with values found in the 
literature, e.g. Zierep (1982), who for Re = 100 gives zE E 6. 

Comparing the entrance lengths for different sets of M and N ,  one can see that M 
influences xE much more than N .  As M measures the strength of the B-field, this 
observation agrees with the expectation that B suppresses motion perpendicular to 
itself. 

5. Conclusion 
Codes are developed for numerical simulation of two-dimensional as well as three- 

dimensional LMMHD flows. While in the two-dimensional case, flows with Hartmann 
numbers up to lo3 are successfully calculated, the limit in the three-dimensional case 
is lo2. These limits are due to the thin boundary layers governing MHD flow. These 
layers have to be resolved, leading to  a large number of grid points. Thus storage is 
the crucial point. To reach higher Hartmann numbers as needed to predict 
performance of self-cooled fusion blankets, two ways are possible ( a )  to have bigger 
and faster machines using equidistant grids as in this work, ( b )  to use non-equidistant 
grids with many points in the thin layers and only a few in the core region. However, 
to best take advantage of the second approach, self-adjusting grids should be 
employed. 

The results presented show how MHD flows are governed by the Lorentz force 
j x  B. Thus, to understand MHD flows, knowledge is needed about the electric 
currents induced in the fluid. They depend on the magnetic field and the conductivity 
of the walls. Besides raising the pressure losses, the Lorentz force produces velocity 
profiles with steep gradients a t  the wall. Among them are the M-shaped velocity 
profiles where the maximum velocity occurs in the side layers instead of at the duct’s 
centre. 

While the principles of MHD flows are known from earlier work (e.g. Hunt & 
Holroyd 1977; Holroyd & Walker 1978; Walker 1986a), the fully numerical 
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approach is able to remove the uncertainties arising from approximations or 
assumptions needed in analytical methods. Two examples are as follows. 

(i) The comparison of pressure gradients obtained from the numerical calculations 
and the formula of Chang & Lundgren (1961), respectively, shows that the latter can 
be safely used for Hartmann numbers larger than 10 and non-conducting sidewalls. 

(ii) The calculation of entrance lengths is an axially directed field directly yields 
the length of the transition region. It is much longer than in hydrodynamic flows, 
because redistribution of the flow requires motion perpendicular to the field, which 
is opposed by the currents induced. 

However, the scope of this paper is not so much to  present numbers for certain 
quantities of interest, but to show the ability of the numerical approach to calculate 
MHD flows and to provide a tool for their study. For instance, it is easily possible 
to change the boundary conditions to put electrodes into the walls or to manipulate 
the imposed field to include also an axial component. 

The results of the calculations of flows in ducts with electrodes mainly confirm the 
work of Alty (1971), but for a certain configuration show a difference in the structure 
of the flow. I n  the case of short-circuited sidewalls and an angle between the 
horizontal and the field direction of less than 45O, Alty obtains thin jets extending 
parallel to the field lines from the corners to the opposite side walls. The calculations 
confirm the existance of these jets but show that they do not reach the opposite wall. 
The reason for this discrepancy is that Alty a priori assumes the variables to be 
constant along the field lines. 

A topic of great interest is that of turbulence in MHD flows (e.g. Moffat 1967; 
Sommeria & Moreau 1982). However, with the present computer resources this 
problem cannot be solved. The values reached for the Hartmann and Reynolds 
numbers are not large enough for turbulence to occur. Accordingly, no kind of 
instability is found in the calculations performed. 

This work has been performed in the framework of the Nuclear Fusion Project of 
the Kernforschungszentrum Karlsruhe and is supported by the European Com- 
munities within the European Fusion Technology Program. 
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continuous interest in its progress. I gratefully acknowledge valuable discussions 
with Professor J. S. Walker, University of Illinois, concerning a general formulation 
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